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Escape from a metastable well under a time-ramped force
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Max-Planck-Institut fu¨r Kolloid- und Grenzfla¨chenforschung, Kantstrasse 55, 14513 Teltow-Seehof, Germany

~Received 21 July 1997; revised manuscript received 17 February 1998!

Thermally activated escape of an over-damped particle from a metastable well under the action of a time-
ramped force is studied. We express the mean first passage time~MFPT! as the solution to a partial differential
equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of
which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can
provide a valuable first estimate.@S1063-651X~98!02106-0#

PACS number~s!: 05.20.2y, 05.40.1j, 87.15.2v
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INTRODUCTION

Thermally activated escape of a particle from a metasta
well has found numerous applications in a variety of syste
@1#. Escape under the additional action of a time-depend
force constitutes a nontrivial generalization. Several stud
@2–6# have been devoted to this problem for asinusoidal
force, which is particularly interesting since this syste
shows stochastic resonance@7#. The topic of the present pa
per is the effect of atime-rampedforce on the escape rate
Apart from its fundamental significance, motivation to stu
this problem arises from recent work on the dynami
strength of molecular bonds@8–10#. The strength of a single
bond can be measured experimentally using atomic fo
microscopy where one in practice applies a time-ram
force @8,9,11–13#. Evans and co-workers@8,9# pointed out
that the rupture strength of such a bond depends on the l
ing rate. This behavior has been seen not only in experim
but also in simulations of a Langevin equation@9,10# and
molecular dynamics simulations at very large loading ra
@10,14#.

For the general problem of diffusive escape from a me
stable well under a force that increases with time, we exp
the mean first passage time~MFPT! as the solution to a par
tial differential equation~PDE!. This exact approach differ
from previous work that introduced an approximation bas
on instantaneous decay rates@9,10#. The numerical solution
of the exact equation is then compared with both this a
another simple approximation. The first one works very w
over a large range of loading rates. The second one ca
calculated easily and still gives a reasonable estimate w
is never off more than 30% over the entire range of load
rates.

MFPT AS AN EXACT SOLUTION TO A PDE

We consider the motion of an overdamped particle in
one-dimensional potentialV(x) under the action of a time
dependent forcef (t). The Langevin equation for this particl
reads

] tx52V8~x!1 f ~ t !1z, ~1!

where the stochastic noise obeys the usual correlat
^z(t)z(t8)&52d(t2t8). Throughout the paper we measu
571063-651X/98/57~6!/7301~4!/$15.00
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energy in units ofkBT and time and length such that th
diffusion coefficient becomes 1. The potentialV(x) has a
metastable well centered atx5xm , a saddle point atxs , and
an activation energyQ[V(xs)2V(xm). While our approach
holds for anyf (t), we will often specialize to a linear ram

f ~ t !5mt, ~2!

with loading ratem.
In the absence of the force (f 50!, the MFPTT(x) that a

particle originally atx needs to escape from this well obe
the equation@15#

L†T~x![~2V8]x1]x
2!T~x!521. ~3!

Here, L† is the backward Fokker-Planck operator. T
boundary conditions areT(xl)5T(xr)50, where for a meta-
stable wellxl is far to the left of the minimum andxr far to
the right of the saddle pointxs . The explicit solutionT(x) as
obtained by simple quadratures of Eq.~3! is well known
@15,16#.

In the presence of a time-dependent force, relation~3!
cannot be used without modification. To obtain an ex
equation for the MFPT, one can get rid of the time depe
dence of the right hand side in Eq.~1! by writing this Lange-
vin equation as a system of two equations

] tx52V8~x!1 f ~t!1z, ] tt51. ~4!

In this form, the problem formally corresponds to a proce
homogeneous in time for the two variablesx(t) and t(t).
Therefore one can apply the standard equation for the MF
which becomes

~]t1 f ~t!]x1L†!T~x,t!521. ~5!

The boundary conditions inx are, as before,T(xl ,t)
5T(xr ,t)50. Since the deterministic variablet does not
diffuse, the equation is first order int. Therefore one can
specify only one boundary condition int which we choose
as T(x,te)50. For these boundary conditions, the soluti
T(x,t) gives the MFPT that the process~4! starting for
t50 at x and t needs to reach either one of the followin
boundaries:~i! the particle reaches the absorbing boundary
xl or xr ; or ~ii ! the variablet becomeste . If te is large
enough, the number of events in which the particle has
7301 © 1998 The American Physical Society
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7302 57BRIEF REPORTS
reached the absorbing boundaries atxl or xr but rather that at
t5te are negligible compared to those in which it escap
over xl or xr . Therefore, in the limitte→`, the solution
T(x,t50) gives the MFPT for the ramped problem. Th
argumentt50 arises from the fact that the ramping sta
with f (t50)50 at t50.

ESCAPE RATE FOR CONSTANT FORCE

Before we present numerical solutions of Eq.~5!, we dis-
cuss two approximations for the special case of a linea
ramped forcef (t)5mt. To avoid a proliferation of symbols
we use the same function symbolT for all MFPT quantities
under a time-varying force, it being unambiguous from t
arguments which case is being discussed. Both approx
tions use the solution to the MFPT problem under cons
force f , which we call T0(x, f ), to construct approximate
solutions for the MFPT under the time-varying forcef (t)
5mt. The MFPTT0(x, f ) obeys

~ f ]x1L†!T0~x, f !521, ~6!

which is easily solved by quadratures as@15#

T0~x, f !5S E
xl

x dy

C~y!
E

x

xr dy8

C~y8!
E

xl

y8
dzC~z!

2E
x

xr dy

C~y!
E

xl

x dy8

C~y8!
E

xl

y8
dzC~z! D Y E

xl

xr dy

C~y!
,

~7!

with C(x)[exp@2V(x)1fx#. These integrals will be calcu
lated numerically.

A significant simplification occurs if one only requires th
result ~7! for large force-dependent activation barriers

Q~ f ![Q02 f „xs~ f !2xm~ f !…@1. ~8!

A saddle point analysis of Eq.~7! then yields the well-known
Kramers rate

T0
K~ f !5t0~ f !exp@Q~ f !#. ~9!

The characteristic time

t0~ f ![
2p

@V9„xm~ f !…V9„xs~ f !…#1/2
, ~10!

is the inverse attempt frequency.V9„xm,s( f )… is the curvature
of the potential at the minimum and the saddle point, resp
tively, whose locations depend on the forcef .

We use the numerical calculation of the MFPT under c
stant force~7!, rather than the Kramers expression~9!, to
construct solutions for a time-varying force using two a
proximations. Both approximations thus obtained are va
for all applied forces even whenQ( f )@1 no longer holds.

SELF-CONSISTENT CONSTANT FORCE „SCCF…
APPROXIMATION

The idea of this crude approximation is that the escap
dominated by a typical force which is determined se
s
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c-

-

-
d

is
-

consistently. In the solution~7! for constant force we write
f 5mT0(x, f ), which leads to the self-consistent relationT
5T0(x,mT). Solving this equation yields the SCCF approx
mationTs(x,m). The main virtue of this simple approxima
tion is that it can be calculated easily.

For large barriers, a further simplification can b
achieved. Using the Kramers expression~9!, the SCCF ap-
proximationTs

K(m) follows from solving the implicit equa-
tion

Ts
K~m!5

2p

V9~xm!uV9~xs!u1/2
exp@Q02mTs

K~xs2xm!#,

~11!

where we notationally suppress thef 5mTs
K dependence in

xm,s5xm,s( f ).

ADIABATIC APPROXIMATION

A somewhat more refined approximation has been in
duced previously within the context of stochastic resona
by Zhou et al. @5# and for the ramped problem in Refs
@9,10#. While the SCCF approximation focuses on the typic
relevant force for the escape, the adiabatic approxima
incorporates history dependence. It assumes a ti
dependent escape raten(t). The probability that a given par
ticle escapes at timet is then given by

p~ t !5n~ t !expS 2E
0

t

dt8n~ t8! D . ~12!

Equation~12! says that the probability of rupture is the pro
uct of two terms: the instantaneous rupture raten(t) at a
given time and the cumulative probability of survival up
that time. This approximation rests on the assumption t
the escape process takes no time. In this limit it becom
exact. For the linear time-ramped process, one now repla
the time dependence by a force dependence viaf 5mt which
leads to the relation

p~ f !5~1/m!n~ f !expS 2~1/m!E
0

f

d f8n~ f 8! D . ~13!

Evans and Ritchie@9# discuss the conditions under whic
this probability has a peak at nonzerof * , which is defined as
the rupture force. Since within our approach, only the MF
is available, we will discuss the quantity

Ta~x,m!5~1/m!E
0

`

d f expS 2~1/m!E
0

f

d f8n~ f 8! D .

~14!

Sincen( f )51/T0(x, f ) with T0(x, f ) from Eq.~7!, the MFPT
Ta(x,m) in the adiabatic approximation can be obtained
performing the two integrals numerically.

NUMERICAL SOLUTION

In this section we present numerical data which comp
the MFPT obtained from the two approximations with t
numerical solution of the exact equation~5!.

Specifically, we use the potential
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57 7303BRIEF REPORTS
V~x![~27/4!Q0x2~12x!. ~15!

This potential exhibits a metastable minimum atxm50 with
a saddle point atxs52/3 and an activation energyQ0.

Figure 1 shows the MFPT for two different values of t
activation energy as a function of loading ratem as calcu-
lated from Eq.~5!. For m50, the MFPT approaches th
zero-force value as obtained from Eq.~3!. The inset shows
that over a large rangeT;m2a wherea.0.8 is an effective
exponent masking an extended crossover froma51 ~with
logarithmic corrections! to a51/2 as discussed below.

The quality of the two approximations is shown in Fig.
where we present the ratio of the MFPT

Ra,s~x,m![Ta,s~x,m!/T~x,m! ~16!

as calculated from either approximation to the exact valu
The gross features of these data can be understoo

identifying three regimes@9,10#. For smallm, one expects
naively that the MFPT deviates from the value at zero fo
if m*m̄ where

m̄[Q~0!exp@2Q~0!#/@t~0!~xs2xm!#. ~17!

While this ~exponentially small! loading rate also signifies
the range where the SCCF starts to deviate from the e
data, the adiabatic approximation holds well even for lar
loading rates. This is remarkable since as shown in the
pendix systematic perturbation theory reveals that both
proximations fail to reproduce theO(m) correction to the
zero-force result for a general potential. It seems that onl
the additional limit of a large activation energy,Q(0)@1, is
good agreement between the exact result and the adia
approximation restored. A mathematical proof of this feat
is beyond the scope of this paper.

For largem, both the potential and the diffusion can b
ignored and then the ratio displayed in Fig. 2 can be ca
lated analytically. Even though the process in this regime
then no longer thermally activated, we include it for tw

FIG. 1. Mean first passage timeT(0,m) as a function of loading
rate m for Q57 andQ55 in the potential~15!. Inset shows the
same data logarithmically. For allm, the starting point has bee
chosen asx50. The absorbing boundary isxr51.6 and the~quite
irrelevant! left boundary is atxl521.6.
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reasons. First, the MFPT is still mathematically well define
Second, for the bond rupture problem described in R
@9,10#, this regime has some interest, where it has b
called ‘‘ultrafast.’’ The time-ramped equation of motion b
comes] tx5mt with the solutionx(t)5x1mt2/2. This leads
to the exact asymptotic result

T~x,m!'A2~xr2x!/m ~18!

and hence toa51/2 as mentioned above@17#.
For the SCCF approximation, the equation of motion b

comes] tx5 f , which leads toT(x)5(xr2x)/ f . Replacingf
by mT(x) yields the relation

Ts~x,m!'A~xr2x!/m ~19!

and henceRs(x,m)'A2/2 for largem. In the same limit, the
adiabatic approximation can be calculated by performing
integrals in Eq.~14!. One obtainsRa(x,m)'Ap/2 which is
closer to the exact result than the SCCF approximation.

In an intermediatem regime, the behavior can be ex
tracted most easily from the SCCF approximation. From
relations lnTs

K5lnTK(0)2mTs
K(xs2xm) one obtains Ts

K

; lnm/m and thusa51 with logarithmic corrections. Ex-
pressed in terms of a mean rupture forcef * [Ts

Km, this be-
havior corresponds tof * ; lnm @9#. As Fig. 1 shows, the data
show a large crossover with an effective exponenta.0.8.

CONCLUSIONS

In this paper we have analyzed diffusive escape ove
barrier in the presence of a time-dependent force. We h

FIG. 2. RatiosRs(0,m) andRa(x,m) of the mean first passag
time as obtained from the SCCF and adiabatic approximations
spectively, to the exact value forQ57 andQ55 as a function of
loading ratem.
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7304 57BRIEF REPORTS
derived an exact PDE for the mean first passage time
solved it both by numerical integration and by use of tw
approximations. Comparison of the~numerically! exact solu-
tion with the adiabatic approximation introduced previou
shows that this approximation holds remarkably well for
large range of loading rates. Formally, our exact equation
the MFPT can easily be generalized to include spa
dependent diffusion coefficients. Likewise, both motion
higher dimensions and inclusion of inertia terms~for smaller
friction! are amenable to the same treatment. The nume
solution of the corresponding equivalent of Eq.~5!, however,
will become quite time-consuming. It will then be helpful
explore the two approximations whose virtues we discus
for our model case.
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APPENDIX: SMALL LOADING RATES

For smallm, perturbation theory of the SCCF approxim
tion works out as follows. We first expand the solution of E
~6! as

T0~x, f !5T~0!~x!1 f T~1!~x!1O~ f 2!. ~A1!

The first-order term obeysL†T(1)(x)52]xT
(0)(x). We

write its solution with the absorbing boundary conditions
T(1)(x)5A@2]xT

(0)#. The linear operatorA can be ex-
pressed easily by quadratures and is formally the invers
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L†. The final step consists in replacingf by mT(0)(x)
5mA@21#. The first-order result of the SCCF approxim
tion thus reads

Ts~x,m!5T~0!~x!1mA@21#A@2]xT
~0!#1O~m2!.

~A2!

A similar perturbative expansion for the adiabatic appro
mation shows that the term linear inm coincides with the
SCCF approximation whereas the termsO(m2) differ in both
approximations from each other.

Time- ~or rathert-) dependent perturbation theory inm
for the solution of the exact equation~5! can be set up as
follows. Inserting the ansatz

T~x,t;m!5T~0!~x!1m@T0
~1!~x!1tT1

~1!~x!#1O~m2!
~A3!

in Eq. ~5!, yields in O(m,t1) the equation L†T1
(1)

52]xT
(0)(x) with the solutionT1

(1)5A@2]xT
(0)#. Inserting

this solution into the equationO(m,t0) yields L†T0
(1)

52T1
(1)(x) with the solutionT0

(1)(x)5A@2A@2]xT
(0)##.

Thus the full equation leads to the perturbative result

T~x,m!5T~0!~x!2mA†A@2]xT
~0!#‡. ~A4!

Since Eq.~A4! differs from Eq.~A2!, neither approximation,
perhaps somewhat surprisingly, reproduces the correct
plitude for the term linear inm. Note, however, that them
50 value is reproduced by both approximations. We susp
that by considering the limitQ→` even the linear term
shown in Eq.~A2! approaches the exact one shown in E
~A4!, but we have not yet been able to show this mathem
cally.
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