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Escape from a metastable well under a time-ramped force
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Thermally activated escape of an over-damped particle from a metastable well under the action of a time-
ramped force is studied. We express the mean first passag€MiR#ET) as the solution to a partial differential
equation, which we solve numerically for a model case. We discuss two approximations of the MFPT, one of
which works remarkably well over a wide range of loading rates, while the second is easy to calculate and can
provide a valuable first estimatg51063-651X98)02106-0

PACS numbefs): 05.20—-y, 05.40:+], 87.15~v

INTRODUCTION energy in units ofkgT and time and length such that the
diffusion coefficient becomes 1. The potent\{x) has a

Thermally activated escape of a particle from a metastablenetastable well centered atx,,, a saddle point ats, and
well has found numerous applications in a variety of systemsn activation energ@=V(xs) — V(X;,). While our approach
[1]. Escape under the additional action of a time-dependertiolds for anyf(t), we will often specialize to a linear ramp
force constitutes a nontrivial generalization. Several studies
[2—6] have been devoted to this problem forsimusoidal f(t)= ut, 2
force, which is particularly interesting since this system _
shows stochastic resonand. The topic of the present pa- With loading rates..
per is the effect of aime-rampedorce on the escape rate. [N the absence of the forcd £0), the MFPTT(x) that a
Apart from its fundamental significance, motivation to studyParticle originally atx needs to escape from this well obeys
this problem arises from recent work on the dynamicalthe equatiori15]
strength of molecular bond8—10]. The strength of a single ,
bond can be measured experimentally using atomic force LT =(=V 5X+55)T(X):_1' )
microscopy where one in practice applies a time-rampe
force [8,9,11-13. Evans and co-workerk8,9] pointed out
that the rupture strength of such a bond depends on the loa
ing rate. This behavior has been seen not only in experimen
but also in simulations of a Langevin equatif®10] and
molecular dynamics simulations at very large loading rate
[10,14. 15,18. .

For the general problem of diffusive escape from a meta- In the presence of a tlme-_d_epgndent force,_ relati@n
stable well under a force that increases with time, we expres%"’mnqt be used without mod|f|cat|on.. To obta|_n an exact
the mean first passage tinl@FPT) as the solution to a par- equation for the MFPT, one can get nd_c_)f the.t|me depen-
tial differential equationPDE). This exact approach differs dgnce of Fhe right hand side in Eg,) by ertlng this Lange-
from previous work that introduced an approximation based/" equation as a system of two equations
on instantaneous decay ra{€s10]. The numerical solution — o\ _
of the exact equation is then compared with both this and ox==V'OO+Hn+L, ar=1. @
another simple approximation. The first one works very welli thjs form, the problem formally corresponds to a process
over a large range of loading rates. The second one can tPﬁ)mogeneous in time for the two variable@) and 7(t).

_calculated easily and still gives a reason_able estimate Wf_‘idf'herefore one can apply the standard equation for the MFPT
is never off more than 30% over the entire range of loadingyhich becomes

rates.

?—|ere, L' is the backward Fokker-Planck operator. The
Bpundary conditions aré(x;) =T(x,) =0, where for a meta-
table wellx, is far to the left of the minimum ang, far to
e right of the saddle point;. The explicit solutionil (x) as
btained by simple quadratures of E®) is well known

(0, + (1) o+ LHT(x,7)=—1. (5
MFPT AS AN EXACT SOLUTION TO A PDE - .
The boundary conditions irx are, as before,T(x,,7)

We consider the motion of an overdamped particle in a=T(x,,7)=0. Since the deterministic variable does not
one-dimensional potentiaf(x) under the action of a time- diffuse, the equation is first order in Therefore one can
dependent forcé(t). The Langevin equation for this particle specify only one boundary condition inwhich we choose
reads asT(x,7e)=0. For these boundary conditions, the solution

T(x,7) gives the MFPT that the procedd) starting for
Ix=—=V'(x)+f(t)+¢, (1)  t=0 atx and 7 needs to reach either one of the following
boundaries(i) the particle reaches the absorbing boundary at
where the stochastic noise obeys the usual correlations or x,; or (i) the variabler becomesr,. If 7, is large
(L(t)L(t'))=268(t—1"). Throughout the paper we measure enough, the number of events in which the particle has not
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reached the absorbing boundaries atr x, but rather that at consistently. In the solutiof7) for constant force we write
7= 7, are negligible compared to those in which it escaped = uTy(X,f), which leads to the self-consistent relatidn
over x; or X,. Therefore, in the limitr,—, the solution =Ty(x,uT). Solving this equation yields the SCCF approxi-

T(x,7=0) gives the MFPT for the ramped problem. The mationT4(x,«). The main virtue of this simple approxima-
argumentr=0 arises from the fact that the ramping startstion is that it can be calculated easily.

with f(t=0)=0 att=0. For large barriers, a further simplification can be
achieved. Using the Kramers expressi@, the SCCF ap-
ESCAPE RATE FOR CONSTANT FORCE proximationTE(,u) follows from solving the implicit equa-
tion

Before we present numerical solutions of E5), we dis-
cuss two approximations for the special case of a linearly
ramped forcef (t) = ut. To avoid a proliferation of symbols T?(,u)=
we use the same function symbblifor all MFPT quantities
under a time-varying force, it being unambiguous from the
arguments which case is being discussed. Both approxim
tions use the solution to the MFPT problem under consta
force f, which we call Ty(x,f), to construct approximate
solutions for the MFPT under the time-varying foréé)
= ut. The MFPTTy(x,f) obeys

exf Qo— wTE(Xs— Xm) ],
(11)

o
V”(Xm) |V”(XS) | 1/2

Yihere we notationally suppress tfie ,uTE dependence in
r.l)t(m,s: Xm,s(f)-

ADIABATIC APPROXIMATION

+ B A somewhat more refined approximation has been intro-
(fox+ L) To(x,F)=—1, (6) duced previously within the context of stochastic resonance
by Zhou et al. [5] and for the ramped problem in Refs.

which is easily solved by quadratures(as)] [9,10]. While the SCCF approximation focuses on the typical

x dy [x dy [y relevant force for the escape, the adiabatic approximation
To(x,f):(f T . T dz¥(2) incorporates history dependence. It assumes a time-
Y (Y)Jx (y) Jx dependent escape ratét). The probability that a given par-
x dy [xdy [y x dy ticle escapes at timeis then given by
) «P(y)fxplf(y') . dz‘”z))/ fxl V(y)’ :
p(t)zv(t)ex;{ —f dt’v(t’)). (12
(7 0
with ¥ (x)=exd —V(x)+fx]. These integrals will be calcu- Equation(12) says that the probability of rupture is the prod-
lated numerically. uct of two terms: the instantaneous rupture raf¢) at a
A significant simplification occurs if one only requires the given time and the cumulative probability of survival up to
result(7) for large force-dependent activation barriers that time. This approximation rests on the assumption that
the escape process takes no time. In this limit it becomes
Q(f)=Qo—f(Xs(f) =xm(f))>1. (8)  exact. For the linear time-ramped process, one now replaces

the time dependence by a force dependencé wigt which

A saddle point analysis of E¢7) then yields the well-known |o54s to the relation

Kramers rate
f
To(f)=T1o(f)exd Q(f)]. ©) p(f)=(1/M)v(f)exp(—(1/M)f0df’v(f’))- 13

The characteristic time Evans and Ritchig¢9] discuss the conditions under which

o this probability has a peak at nonzdrb, which is defined as
To(f)= , (10) the rupture force. Since within our approach, only the MFPT
[V (X F)V" (x5 F))]H2 is available, we will discuss the quantity

is the inverse attempt frequendy. (X, s(f)) is the curvature % LI
of the potential at the minimum and the saddle point, respec- Ta(X=M):(1/M)L df exp( _(1/M)fodf v(f )>-
tively, whose locations depend on the force (14)
We use the numerical calculation of the MFPT under con-
stant force(7), rather than the Kramers expressi®, to  Sincev(f)=1/Ty(x,f) with To(x,f) from Eq.(7), the MFPT
construct solutions for a time-varying force using two ap-T,(x,u) in the adiabatic approximation can be obtained by
proximations. Both approximations thus obtained are validoerforming the two integrals numerically.
for all applied forces even whe@Q(f)>1 no longer holds.

NUMERICAL SOLUTION
SELF-CONSISTENT CONSTANT FORCE (SCCH

APPROXIMATION In this section we present numerical data which compare

the MFPT obtained from the two approximations with the
The idea of this crude approximation is that the escape isumerical solution of the exact equatis).
dominated by a typical force which is determined self- Specifically, we use the potential
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FIG. 1. Mean first passage tinf&0,u) as a function of loading S 038 \\\
rate u for Q=7 andQ=5 in the potential(15). Inset shows the ~a SCCE\\
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) . . o ) FIG. 2. RatiosR4(0,1) andRy(x,u) of the mean first passage
This potential exhibits a metastable minimumxgt=0 with  time as obtained from the SCCF and adiabatic approximations, re-
a saddle point axs=2/3 and an activation energy,. spectively, to the exact value f@=7 andQ=5 as a function of

Figure 1 shows the MFPT for two different values of the loading rateu.

activation energy as a function of loading raieas calcu-

lated from Eq.(5). For u=0, the MFPT approaches the reasons. First, the MFPT is still mathematically well defined.

zero-force value as obtained from E@). The inset shows Second, for the bond rupture problem described in Refs.

that over a large rangé~ u~ “ wherea=0.8 is an effective [9,10], this regime has some interest, where it has been

exponent masking an extended crossover fieml (with  called “ultrafast.” The time-ramped equation of motion be-

logarithmic correctionsto a=1/2 as discussed below. comesd;x= ut with the solutionx(t) =x+ ut?/2. This leads
The quality of the two approximations is shown in Fig. 2, to the exact asymptotic result

where we present the ratio of the MFPT
T )= N2(X% =X)/ (18)

Ra,s(X, 1) =Ta s(X, )/ T(X, ) (16)
. o and hence tax=1/2 as mentioned abova7].
as calculated from either approximation to the exact value. For the SCCF approximation, the equation of motion be-

The gross features of these data can be understood b 2 . VR .
identifying three regime$9,10]. For small u, one expects g%m?rsﬁx_ife](ﬁh;ﬁg Ir(z?;[isOLoT(x)—(x, X)/f. Replacingf
naively that the MFPT deviates from the value at zero force y wT(x) y

if u=u where T, )=~ (X, —X)/ (19

#=Q0)ex = QO VL 7(0)(Xs=Xm) ] 17 and hencdRy(x, u) ~ \2/2 for largew. In the same limit, the
While this (exponentially smaJl loading rate also signifies adiabatic approximation can be calculated by performing the
the range where the SCCF starts to deviate from the exadftegrals in Eq.(14). One obtain®Ry(x, u) = /m/2 which is
data, the adiabatic approximation holds well even for large€loser to the exact result than the SCCF approximation.
loading rates. This is remarkable since as shown in the Ap- In an intermediaten. regime, the behavior can be ex-
pendix systematic perturbation theory reveals that both apracted most easily from the SCCF approximation. From the
proximations fail to reproduce th®(u) correction to the relations ITg=InT¥(0)~uT{(x—X,) one obtains T
zero-force result for a general potential. It seems that only im~Inu/u and thuse=1 with logarithmic corrections. Ex-
the additional limit of a large activation energ(0)>1,is  pressed in terms of a mean rupture fofée= T u, this be-
good agreement between the exact result and the adiabatiavior corresponds t6* ~Inu [9]. As Fig. 1 shows, the data
approximation restored. A mathematical proof of this featureshow a large crossover with an effective exponent0.8.
is beyond the scope of this paper.
~ For large ., both the _potgntial and_ the_ diffusion can be CONCLUSIONS
ignored and then the ratio displayed in Fig. 2 can be calcu-
lated analytically. Even though the process in this regime is In this paper we have analyzed diffusive escape over a
then no longer thermally activated, we include it for two barrier in the presence of a time-dependent force. We have
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derived an exact PDE for the mean first passage time and®. The final step consists in replacing by wT©(x)
solved it both by numerical integration and by use of two= 4 A[ —1]. The first-order result of the SCCF approxima-
approximations. Comparison of tieumerically exact solu-  tjon thus reads

tion with the adiabatic approximation introduced previously

shows that this approximation holds remarkably well for a  Ty(x,u)=T©(x)+ wA[ — 1]A[ — 6, T @1+ O(u?).

large range of loading rates. Formally, our exact equation for (A2)
the MFPT can easily be generalized to include space-

dependent diffusion coefficients. Likewise, both motion inA similar perturbative expansion for the adiabatic approxi-
higher dimensions and inclusion of inertia terfar smaller ~ mation shows that the term linear j coincides with the
friction) are amenable to the same treatment. The numeric@CCF approximation whereas the ter®&u?) differ in both
solution of the corresponding equivalent of E5), however, —approximations from each other.

will become quite time-consuming. It will then be helpful to ~ Time- (or rather7-) dependent perturbation theory in
explore the two approximations whose virtues we discussetpr the solution of the exact equatidb) can be set up as
for our model case. follows. Inserting the ansatz
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discussions with E. Evans, H. Gaub, M. Rief, and M. Wortisinis solution into the equatiorO(u,7°) yields ﬁTTél)

are gratefully acknowledged. = —T{M(x) with the solutionT§(x)=A[ — Al — 3, TO7].
Thus the full equation leads to the perturbative result
APPENDIX: SMALL LOADING RATES

—TO) ) — )
For smallu, perturbation theory of the SCCF approxima- T ) =TV = w ALAL = 6, T 1] (A4)

t(leo)navg/orks out as follows. We first expand the solution of Eq.Since Eq/(A4) differs from Eq.(A2), neither approximation,

perhaps somewhat surprisingly, reproduces the correct am-
To(x,£)=TOx) + T (x) + O(f?). (A1) plitude for the term linear inx. Note, however, that the
=0 value is reproduced by both approximations. We suspect
The first-order term obeysL'TM(x)=—4,T®(x). We that by considering the limiQ—c even the linear term
write its solution with the absorbing boundary conditions asshown in Eq.(A2) approaches the exact one shown in Eq.
TO(x)=A[— 0, T®]. The linear operatotd can be ex- (A4), but we have not yet been able to show this mathemati-
pressed easily by quadratures and is formally the inverse tcally.
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